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Abstract

The use of artificial intelligence (AI) in healthcare has
become a very active research area in the last few years.
While significant progress has been made in image clas-
sification tasks, only a few AI methods are actually be-
ing deployed in hospitals. A major hurdle in actively
using clinical AI models currently is the trustworthi-
ness of these models. More often than not, these com-
plex models are black boxes in which promising results
are generated. However, when scrutinized, these mod-
els begin to reveal implicit biases during the decision
making, such as detecting race and having bias towards
ethnic groups and subpopulations. In our ongoing study,
we develop a two-step adversarial debiasing approach
with partial learning that can reduce the racial dispar-
ity while preserving the performance of the targeted
task. The methodology has been evaluated on two inde-
pendent medical image case-studies - chest X-ray and
mammograms, and showed promises in bias reduction
while preserving the targeted performance.

Introduction
Artificial Intelligence (AI) models have demonstrated
expert-level performance in image-based diagnostic tasks,
resulting in increased clinical adoption and FDA approvals.
The new challenge in AI is to understand the limitations of
models from the perspective of demographic bias in order to
reduce potential harm. The unknown disparities based on de-
mographic factors could worsen currently existing inequali-
ties worsening patient care for some groups.

AI bias can be defined as models with outputs provid-
ing outcomes that negatively affects one sub-group of the
study population more than others. Examples include differ-
ing allocation of healthcare resources based on patient de-
mographics (Obermeyer et al. 2019; Benjamin 2019), bias
in language models developed on clinical notes (Zhang et
al. 2020), and melanoma detection models developed pri-
marily on images of light-colored skin (Adamson and Smith
2018). In the clinical domain, unintended bias in AI systems
affecting individuals unfairly based on race, gender, and
other clinical characteristics has been highlighted in multi-
ple studies (Parikh, Teeple, and Navathe ; Whittaker et al. ).
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AI models applied in other applications have also presented
similar biases such as face detection models failing to cor-
rectly identify individuals of minority groups (Buolamwini
and Gebru ). Given such examples, biased AI systems can
result in a variety of fairness-related harms, particularly in
healthcare.

A core challenge for reducing AI bias is that the model
final performance and reasons resulting in unfairness of AI
models are not mutually exclusive and can often exacerbate
one another. Recently, (Banerjee et al. 2021) showed that AI
models trained for diagnosis can learn unintended racial in-
formation from different imaging modalities. Thus, AI mod-
els may use learned demographic information for detecting
a diagnosis even when such attribute is not associated with
the diagnosis. There are examples of race-ethnicity and gen-
der influencing clinician decision-making, and given that AI
is trained on real-world data, it is reasonable to expect that
models would learn similar biases.

Common technique adopted within the community to re-
duce biases is curating a training dataset with greater num-
ber of positive cases across demographics (Larrazabal et al.
). Other popular approaches to remove biases such as build-
ing demographic-specific models often suffer from a lack
of demographic representation. We observed that techniques
attempting to decouple demographic information and task
predictions are not able to match baseline model perfor-
mances (Seyyed-Kalantari et al. ). Our goal is to develop an
efficient methodology for model debiasing without the need
for demographically balanced datasets and simultaneously
match the baseline model performance.

The core contributions of the current article are -

1. Present AI model bias in terms of patients’ race for two
prevailing use-cases - chest X-ray and mammogram im-
age interpretation.

2. Reducing racial bias by implementing a novel adversar-
ial debiasing technique with partial model tuning while
preserving the baseline model performance.

3. Compare the performance of full and partial debiasing
techniques for both chest X-ray and mammogram image
interpretation.
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Methodology
In Fig. 1, we present a simplistic visual of the proposed ar-
chitecture which contains two parallel branches after core
CNN backbone network - (1) predictor - train to pre-
dict targeted variable y given input X by minimizing cost
Lpredictor(y, ŷ). ŷ is the model prediction given input X
which can be modeled as a f(X); (2) adversarial - pre-
dict the protected variable Z given input X and reverse the
gradient for penalizing learning of protected variable. Hypo-
thetically, often f(X) is highly dependent on protected vari-
able Z and penalizing the learning of protected often signifi-
cantly hamper the prediction performance of the target data.
Demographic factors, including race, can be modeled as a
protected variable.

Figure 1: Architecture of the proposed architecture - adver-
sarial and predictor branch

Training of the proposed architecture involves two back-
ward passes. In the first pass, the model minimize the loss for
both predictor and adversarial branches as L = Lpredictor+
λ ∗ Ladversarial where Ladversarial is loss for learning
the protected variable Z and λ is the regularization factor
which can be in the range of [0, 1]. In the second pass, we
only backpropagate the sign flipped gradient corresponding
to the adversarial branch for modeling the penalization as
L = −λ∗Ladversarial. First pass helps the model to learn si-
multaneously the targeted and protected variables while the
second pass intend to suppress learning of rotected variable
Z. We used the same λ = 0.53 for both phases.
Partial fine-tuning: We explore the potential of improving
model performance even after de-biasing by fine-tuning a
subset of convolution layers of a pre-trained model instead
of the complete network. The layers used for finetuning are
identified via an ablation study which measures the perfor-
mance difference of the targeted and protected variable pre-
diction after dropping 10% of the top similar filters relative
to the total number of filters from the targeted convolution
layers (Meyes et al. 2019). It should be noted that due to
the increasing sizes of the different convolutional layers, the
same proportion may correspond to a different number of
ablated filters. Layers where the protected variable predic-
tion experienced higher performance degradation, was iden-

Table 1: Dataset description - chest X-ray and mammogra-
phy images. Tissue density 1 = fatty, 2 = fibrogranular den-
sity, 3 = heterogeneously dense, 4 = extremely dense.

Chest X-ray Dataset
Race Gender Age

Black/
African

American
38,024 Male 34,857

0-19 1,566

20-39 13,237

40-59 21,227

White/
Caucasian 35,348 Female 38,515 60-79 28,374

80+ 8,968

Total Patients 73,372
Total Images 137,985

Mammography Dataset
Race Tissue Density Age

Asian 1,305 1 1,853 <45 2,941

2 7,408 45-59 7,279Black/
African

American
8,164

3 7,205 60-79 6,705

White/
Caucasian 7,924 4 873 80+ 468

Total Patients 17,393
Total Images 34,134

tified for finetuning alongside its downstream layers with the
proposed two-step adversarial learning.

Results
Datasets
In this study, we validated the performance of the proposed
architecture for the following two independent use-cases -
(1) Diagnosis from chest X-ray images - We received the de-
identified dataset of 137,985 chest x-ray images of 73,372
unique patients from Emory University hospital. The demo-
graphic factors are described in Table 1. The targeted task
is to identify four common radiology findings - i) atelecta-
sis, 2) edema, 3) pneumothorax, and 4) normal cases, and
patient race is considered as protected variable.
(2) Infer tissue density from the mammogram images - We
received the de-identified dataset of 34,134 mammogram
images of 17,393 unique patients from Emory University
hospital (see Table 1). The targeted task is to classify the
images based on breast tissue density inferred manually by
the expert radiologist, and similar to the chest x-ray, patient
race is considered as protected variable.

Quantitative Performance
We have compared the performance three models - (1) Base-
line - a CNN backbone but with no de-biasing, (2) Full de-
bias - 2-step adversarial training of the same CNN back-
bone, (3) Partial debias - 2-step adversarial training of the
same CNN backbone with ablation for indentifying optimal



Figure 2: Class-wise TPR disparity plots for baseline, partial
and full debias model: top plot presents chest x-ray and bot-
tom plot presents mammogram use case. Caucasian(white)
is represented as ref group in both disparity measures.

layers for learning. In order to evaluate the models, we gen-
erated a patient-wise separation of the train : validation :
test splits for both case-studies as 60 : 20 : 20 and presented
the results of all the models on the test set. Table 2 presents
class-wise performance of all the three models in terms of
AUCROC, Precision and recall. Bias of the models is evalu-
ated in terms of True Positive Disparity (TPR) score where
the true positive rate of the target patient subgroup is com-
pared with the reference group as TPRtarget

TPRref
. any disparity

measure between 0.8 and 1.25 can be deemed fair as per the
80 percent rule for determining disparate impact (Corbett-
Davies and Goel 2018).

As seen from Table 2, with partial and full debiasing, we
achieved comparable overall target task performance on the
mammogram images with the baseline (no debiasing). In-
terestingly, for chest X-ray case-study, we even observed
slight performance improvement with partial debiasing over
the baseline - no finding AUC improved from 0.86 to 0.89,
atelectasis improved from 0.86 to 0.87.

Chest X-ray cases study is a classic case of low bias AI
model where the TPR disparity of the chest X-ray case stud-
ies was within the acceptable range for the baseline model,
except for the Edema class (see Fig. 2). With partial debi-
asing, we managed to reduce the TPR disparity of Edema
from 1.33 to the acceptable range of 1.11 with no signif-
icant change in performance. For the mammography use-

Table 2: Performance analysis for the targeted task - chest X-
ray diagnosis and breast density classification is represented
within the same table.

Diagnosis from Chest X-Ray

Disease Metric Model comparison
Baseline Partial Full

Atelectasis
AUC 0.865 0.870 0.873

Precision 0.889 0.891 0.893
Recall 0.925 0.924 0.926

Edema
AUC 0.898 0.883 0.884

Precision 0.503 0.457 0.405
Recall 0.511 0.525 0.484

Pneumothorax
AUC 0.829 0.837 0.857

Precision 0.558 0.586 0.591
Recall 0.460 0.505 0.512

No Finding
AUC 0.866 0.889 0.846

Precision 0.346 0.336 0.349
Recall 0.188 0.313 0.313

Mammography Debiasing Results

Infer breast tissue densities Metric Model comparison
Baseline Partial Full

1
AUC 0.965 0.960 0.942

Precision 0.637 0.709 0.637
Recall 0.858 0.677 0.682

2
AUC 0.899 0.896 0.879

Precision 0.781 0.769 0.763
Recall 0.765 0.758 0.736

3
AUC 0.923 0.895 0.917

Precision 0.879 0.825 0.831
Recall 0.739 0.727 0.821

4
AUC 0.979 0.972 0.957

Precision 0.413 0.324 0.482
Recall 0.867 0.883 0.625

case, the TPR disparity was prominent in baseline model for
both African American and Asian patients for all the tissue
density classes. Given the known correlation between pa-
tient race and breast tissue density, full debias model per-
formance degraded from the baseline while disparity didn’t
improve. With the new partial de-biasing technique, we pre-
serve the baseline performance while reducing the TPR dis-
parity for African American patients. TPR disparities for
Asian patients on the low tissue density classes were im-
proved from 3.37 to 1.89 with full debiasing and to 1.67
with partial debiasing. However, no significant change was
observed in disparity score for heterogeneously dense tis-
sue class for Asian patients. This could be due to the fact
that most of the Asian women have denser breasts on mam-
mography thus reducing disparity for denser tissue class is
extremely challenging (Bae and Kim 2016).

Conclusion
We proposed a two step adversarial debiasing method with
partial learning and evaluated the approach on two distinct
medical image datasets. The proposed architecture can suc-
cessfully preserved the targeted task performance while re-
ducing the TPR disparity. This describes our initial exper-
iments with the proposed methodology. In future, we plan
to apply this technique for predictive analytics for health-
care problems while reducing the scocio-economical bias.
The adversarial training approach described can be applied
regardless of predictor’s model architecture, as long as the
model is trained using a gradient-based method.
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