

3D-OOCS: Learning Prostate Segmentation with Inductive Bias

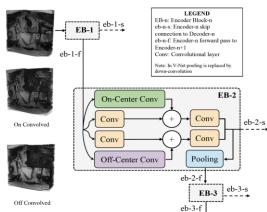
Shrajan Bhandary¹, Zahra Babaiee¹, Dejan Kostyszyn², Tobias Fechter², Constantinos Zamboglou², Anca-Ligia Grosu², Radu Grosu¹

¹Technische Universität Wien

²University Medical Center Freiburg

I) Main Motivation

- Current convolutional neural networks (CNN) are not robust in 3D medical image tasks such as prostate segmentation.
- To overcome this, two residual components are added to the second encoder blocks of different 3D U-Net variants.
- The two pathways: on and off center-surround (OOCS), generalise the ganglion pathways in the retina to a 3D setting.
- The OOCS complements the CNN network with sharp edgedetection inductive biases.



II) 3D On-Off Center-Surround Kernels

 The OOCS receptive fields are computed with a difference of two Gaussian functions.

$$DoG_{\sigma,\gamma}(x,y,z) = \frac{A_c}{\gamma^3} e^{-\frac{x^2 + y^2 + z^2}{2\gamma^2 \sigma^2}} - A_s e^{-\frac{x^2 + y^2 + z^2}{2\sigma^2}}$$

- γ is the ratio of the radius of the center to the surround, σ is the variance of the Gaussian function, A_c and A_s are the center and surround coefficients respectively.
- We compute the On-and-Off kernels from the same equation, with inverted signs while ensuring that the absolute sum of the negative and positive weights (given by *c*) are equal.
- The kernel size (k) depends on the radius of the central sphere (r) and γ. For k = 3: r = 1 and γ = ½, whereas, for k = 5: r = 2 and γ = ⅔.
- For a given input *X*, we calculate the On and Off responses by convolving *X* with the computed On-and-Off kernels separately:

$$\begin{split} \chi_{\mathrm{On}}[x,y,z] &= (\chi*+DoG[r,\gamma,c])[x,y,z] \\ \chi_{\mathrm{Off}}[x,y,z] &= (\chi*-DoG[r,\gamma,c])[x,y,z] \end{split}$$

III) Prostate Segmentation Experiments

- The prostate MR volumes used in the experiments were obtained from the Medical Segmentation Decathlon (MSD) challenge.
- · State-of-the-art (SOTA) base models: UNet, V-Net and Attention-Unet.
- SOTA architectures were extended with OOCS-kernels of different size (*k*=3 and *k*=5), then and compared with their respective original models.

Model Name	DSC*	HSD ⁺ (mm)
U-Net	0.744 ± 0.24	33.777 ± 37.81
OOCS U-Net (k3)	0.798 ± 0.11	24.518 ± 12.46
OOCS U-Net (k5)	0.824 ± 0.07	24.474 ± 12.48
V-Net	0.792 ± 0.16	25.170 ± 22.91
OOCS V-Net (k3)	0.791 ± 0.13	26.488 ± 17.68
OOCS V-Net (k5)	0.825 ± 0.08	21.471 ± 10.01
Attention U-Net	0.824 ± 0.09	27.822 ± 14.64
OOCS Att. U-Net (k3)	0.845 ± 0.07	24.106 ± 14.70
OOCS Att. U-Net (k5)	0.835 ± 0.11	$\textbf{23.531} \pm \textbf{14.89}$

* - Sørensen-Dice coefficient, + - Hausdorff Distance

0.488 ± 17.68

segmentation task, and are also robust against distribution shifts. • Future work would be to employ the OOCS U-Nets to segment prostate

OOCS encoder blocks in different U-Nets.

Future work would be to employ the OOCS U-Nets to segment prostate tumours, and also expand to other modalities such as CT and PET.

· We introduced the On-Off center-surround to 3D kernels, and designed

· The OOCS extended networks show notable enhancements in prostate

from MRIs.

· To examine the robustness of the models, we introduced three types of

noise: Gaussian blur, random Gaussian noise, and motion transform.

kernels significantly increase the accuracy of CNNs.

· The segmentation experiments on the MSD dataset show that the OOCS

· OOCS-Attention U-Net (k5) performs the best prostate segmentation

V) Conclusions

IV) Robustness Evaluation