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In the modern era, machine learning and artificial intelligence are 
applied to new aspects of our lives with each passing day.  As these 
fields are increasingly embedded within consequential fields like self-
driving cars, recidivism prediction, credit loaning, and healthcare 
advising, it has become increasingly clear that criteria beyond 
accuracy are required for these multifaceted applications.  It has 
become ever-pressing to address the needs of interpretability, 
robustness, safety, and fairness for these decision-critical 
applications.  

This work leverages interpretability as the cornerstone to these 
auxiliary requirements by blending the powerful inductive biases of 
deep learning with the robustness and interpretability of classic 
statistical methods.  We demonstrate the empirical performance of 
our “SIAN” model on two datasets: MIMIC-III for 48-hour mortality 
prediction and causal inference for blood donation.  We find our 
model can consistently outperform neural networks, kernel 
machines, and boosting methods while remaining much more 
interpretable.  We explore the interpretations found by our model 
and discuss their relevancy towards applying ML algorithms in 
healthcare applications, reiterating the need for causality-based
methods in the safety-critical domain of healthcare.

Linear Model:

Additive Model:

The limitation of these models is they cannot model “feature 
interactions” where two features are simultaneously important  and 
cannot be additively combined e.g. the XOR function f(x1,x2) = x1·x2.

XOR function interaction strength definition

We use the expectation of the mixed derivative of the tuple to 
measure the “interaction strength” of a given tuple/ feature subset.  
The following model is able to handle these more general cases and
can model an arbitrary function.

Generalized Additive Model with Interactions:

In theory, we could include all possible interaction terms just like in a 
typical deep neural network, however, we selectively choose a very 
small portion of these 2d possible interactions where d is the number 
of features (in our case d=30 or d=34).  

Our algorithm focuses on only specifying a very small (sparse) subset 
of all the possible 234 or 230 feature interactions which could exist in 
the dataset.  We argue that the very high-dimensional feature tuples 
are not only more difficult to model but also have shrinking effect on 
the true outcome as their size increases.  

Hence, we train our model to focus only on a sparse subset of all 
feature interactions using an additive model.  Because we use neural 
networks to fit the additive model, we refer to our method as a 
Sparse Interaction Additive Network (SIAN).

Below, we illustrate an example of selecting 7 of the 16=24 possible
interactions for a small 4-dimensional input.

Our algorithm is based on the fact that: for an interaction to exist, all 
of its subsets need to exist as well.  For example, if {1,2,3} exists, then 
it is required that {1,2}, {1,3}, and {2,3} exist.  We use this fact to start 
at one-dimensional features 
and slowly build to higher-
dimensional interactions.  
This has the added bonus
that if all of our interactions 
are less than or equal to two 
dimensions, we can fully plot 
the “shape functions” of our
prediction algorithm.

We use the “Archipelago” 
method to approximate the 
“interaction strength” as 
defined to the left in the 
Introduction section as the 
expectation of the square 
of the mixed derivative [1].  
This method approximates 
the mixed derivative using a 
secant approximation or the
finite differences method.  
We average the result over a 
validation set to estimate 
the strength across the entire dataset distribution.

Below we can see the results of multiple different models for both 
the MIMIC and blood donation datasets.  AUROC and AUPRC are the 
area under receiver-operating characteristic curve and precision-
recall curve, respectively.  We use these metrics to analyze 
classification prediction for very imbalanced class frequencies.  For
the blood donation dataset, we run a mock experiment on held-out 
data to measure the percentage of donors and the economic benefit 
(see [3] for a detailed explanation) of a given decision algorithm.

We find that our model performs consistently against support vector 
machines, deep neural networks, random forests, XGB boosting, and 
EMB [2].  Interestingly, we find that the one-dimensional and two-
dimensional versions of SIAN perform the best on these two datasets 
rather than the higher-dimensional versions.  Ongoing work 
hypothesizes this is a consequence of the log-ratio between the 
number of samples (32k, 60k) versus the dimensionality (30, 34).

We find that our sparse model performs on par with other popular 
and state-of-the-art machine learning methods including XGB, kernel 
machines, random forests, multilayer perceptrons, and EMB.  Despite 
this level of performance, SIAN does not sacrifice interpretability 
using one- and two-dimensional shape functions.
We use our interpretable insights to discover discrepancies in our 
causal understanding of the data.  We reiterate the importance of 
distinguishing causation from correlation in the healthcare domain
and we call for further research on the robustness of causal inference 
in domains where purely randomized experiments are impossible 
from a practical standpoint.

Add your information, graphs and images to this section.

Datasets

MIMIC-III:
We collect 30 covariates from the electronic health records of 32,000
ICU patients over a 48-hour period.  We include features which are 
commonly believed to important in mortality prediction, including 
those required to predict the interpretable SAPS-II and SOFA scores.  
There is a positivity rate of around 9.2% in the dataset.

Blood Donation:
We collect 34 covariates from 60,000 potential donors.  This data was 
collected as randomized experiment where a portion of the potential 
donors received a text message offering them a grocery coupon for 
donating blood.  There was an observed increase in donations from 
the incentivized population.  The total positivity rate was around 1.0%.

Discussion

Shape Functions
We can see our model has learned many simple trends from the 
dataset, including that abnormally high blood pressures, abnormally 
high heart rates, and unscheduled emergency surgeries are 
indicative of higher mortality risk.  Moreover, our interaction 
detection algorithm finds an association between urine output and 
blood urea nitrogen as well as an association between minimum 
heart rate and maximum recorded temperature.
Our causal inference dataset sees similarly interpretable trends 
including that more recent donors, high frequency donors, and older 
donors are generally more likely to donate blood.

Interpretability and Causality
Especially in the realm of healthcare, it is important to note that 
these models are trained to pick up on statistical correlations rather 
than the true causality of the process.

In the above “Glasgow Coma Scale” plot which indicates mental 
alertness, we can see that the risk of death gradually decreases as we 
score higher on the alertness scale.  However, as we approach the 
maximum score of 15, our risk of death actually increases for scores 
of 14 and 15.  This is a direct consequence of our correlation-based 
analysis and is likely a consequence of hospital staff giving extra 
attention to patients with below perfect GCS scores.  
Similar trends have previously been observed such as lower death 
rates in hospital patients with ages beyond 100 and for pneumonia 
patients afflicted with asthma [2].

Our second dataset alleviates these correlation issues by working 
directly on randomized experiment data.  Clinical trials are the 
golden standard of experimental design; however, they are extremely 
costly and can face ethical and legal constraints in the domain of 
healthcare.  In this setting, we need to explicitly balance confounding 
variables with potentially unknown treatment distributions.  We often 
must randomize amongst two feasible treatment paths without 
ensured compliance from patients.  Towards these challenges, we 
suggest further studies on low-risk econometric domains to 
understand algorithmic challenges in this domain before application 
to the safety-critical domain of healthcare, like our low stakes
experiments on blood donation likelihood.
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