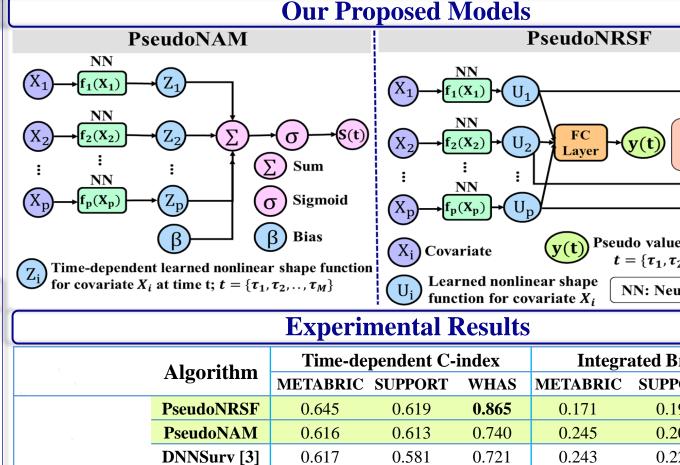


A Pseudo Value Based Interpretable Neural Additive Model For Survival Analysis

Md Mahmudur Rahman, Sanjay Purushotham

Department of Information Systems, University of Maryland, Baltimore County mrahman6@umbc.edu, psanjay@umbc.edu

Motivation


- Survival analysis aims to predict the survival probability or risk of an event over time.
- Existing statistical models and ML models, such as Cox Proportional Hazards [5] and Random Survival Forests (RSF) [4], are interpretable but less accurate, while deep learning-based survival models are accurate but not interpretable.
- Goal: To develop accurate yet interpretable deep survival models in the presence of censoring.

Our Proposed Solution

Key Idea: Use jackknife pseudo values to handle censoring [2] and to obtain a subject-specific prediction of survival probability. Interpretability is achieved by using Neural Additive Models (NAM) [1] or RSF [4]. **Pseudo values:** For subject i, pseudo values, $\hat{y}_i(t)$, for survival probability [S(t)] at time t^* are defined as:

 $\hat{y}_{i}(t^{*}) = n \hat{S}(t^{*}) - (n-1) \hat{S}^{-i}(t^{*})$

Proposed Models: PseudoNAM is an interpretable deep survival model, which uses the NAM to learn non-linear individual covariate effects on the survival probabilities. To improve the performance of PseudoNAM, we propose PseudoNRSF, which uses the learnt non-linear shape functions as input to an interpretable RSF.

0.641

0.655

0.616

0.660

0.614

0.550

0.616

0.622

Interpretability: Global and Covariate level interpretations on METABRIC Data

0.589

0.593

0.595

0.616

0.589

0.550

0.638

0.568

0.787

0.851

0.739

0.783

0.685

0.618

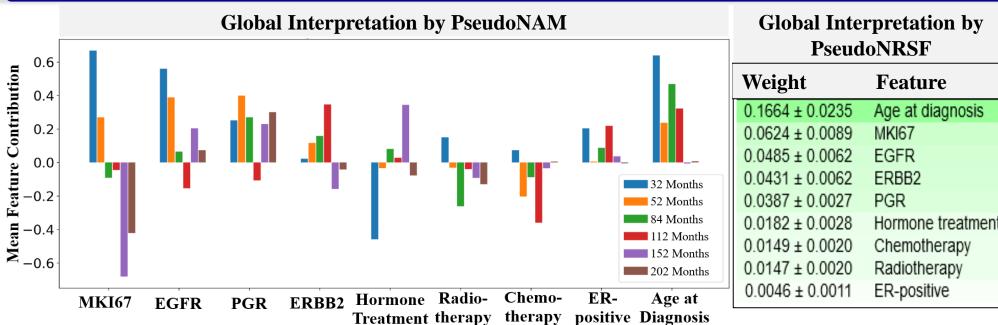
0.768

0.739

0.165

0.178

0.249


0.168

0.201

0.225

0.296

0.313

Global interpretation plots provide overall feature importance scores and interpretations about the positive and negative impact of covariates on predictions. For example: Covariates such as MKI67, radiotherapy, and chemotherapy have positive feature contributions at earlier time points (32 months), which means that they influence better survival outcomes. However, at later time points (such as 112 months), these features have negative feature contributions - meaning they result in mortality.

Deep

Learning

Based Models

ML Based

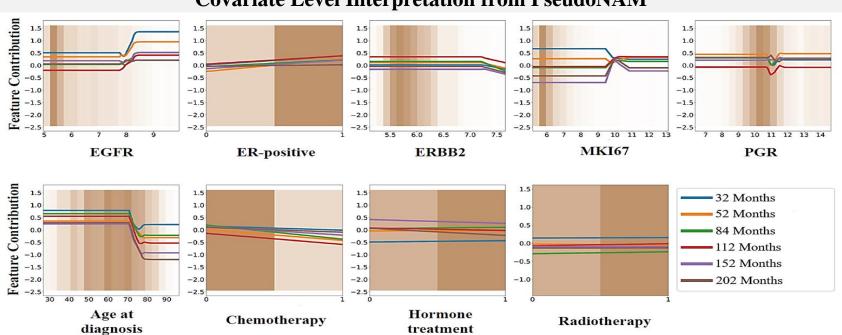
Models

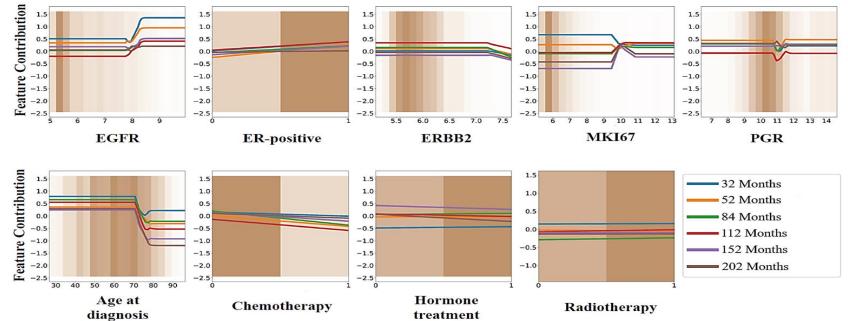
Statistical Model

DeepSurv [5]

DeepHit [6]

DSM[7]


CoxTime [8]


PCHazard [8]

MTLR [9]

RSF [4]

CoxPH [5]

Covariate level interpretation plots show individual feature time-dependent impact on survival predictions. For example: Survival probability for age at diagnosis at all prediction times starts decreasing after 65 years, and **Chemotherapy** is biased to the patients who did not receive chemotherapy since the density is much higher for this group (darker brown bar).

		Summary
F		• PseudoNAM models obtain good predictive, discriminative,
		and interpretable results.
t) Random Survival Forests		\checkmark Utilizes pseudo values to handle censoring.
		\checkmark capture non-linear shape functions through neural additive
		model, which is not possible in other non-deep models.
		\checkmark A step towards transparency in the deep learning models -
		through global and feature-level interpretations .
		✓ Visualize and quantify covariates' contribution and impact
values at time t; $\{\tau_1, \tau_2,, \tau_M\}$: Neural Network		on the survival predictions.
		References
		1. Agarwal et al. 2020. Neural additive models: Interpretable machine learning with neural nets. arXiv:2004.13912.
		2. Rahman et al. 2021. DeepPseudo: Pseudo Value Based Deep Learning Models for
ed Brier Score		Competing Risk Analysis. AAAI, volume 35, 479–487.
SUPPORT	WHAS	3. Zhao et al. 2020. Deep neural networks for survival analysis using pseudo values. IEEE JBHI.
0.196	0.099	 JBHI. Ishwaran et al. 2008. Random survival forests. The annals of applied statistics
0.207	0.267	5. Katzman et al. 2018. DeepSurv: personalized treatment recommender system using a
0.221	0.290	Cox proportional hazards deep neural network. BMC.6. Lee et al. 2018. Deephit: A deep learning approach to survival analysis with competing
0.198	0.132	o. Lee et al. 2018. Deepnit: A deep learning approach to survival analysis with competing risks. AAAI.
0.211	0.140	7. Nagpal et al. 2021. Deep survival machines: Fully parametric survival regression and
0.212	0.201	representation learning for censored data with competing risks. IEEE JBHI.
0.192	0.136	8. Kvamme et al. 2019. Continuous and discrete-time survival prediction with neural networks. <i>Lifetime Data Anal</i>
0.225	0.141	9. Yu et al. 2011. Learning patient-specific cancer survival distributions as a sequence of
0.263	0.162	dependent regressors. NIPS.
0.190	0.206	This work is partially supported by grant IIS-1948399 from the US
0.206	0.234	National Science Foundation

Covariate Level Interpretation from PseudoNAM