Two-step adversarial debiasing with partial learning -- medical image case-studies
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»Chest X-ray diagnosis no significant drop In
performance was observed but little reduction in bias.

Table 2. Performance metrics comparing training techniques evaluated
on our chest X-ray and mammography datasets.

CONCLUSIONS

» For the Breast density prediction task partial
debiasing maintained good performance while reducing
TPR disparity (0.8 — 1.2 no disparity range).

Table 1. Demographic distribution of datasets in study.
Effectiveness of debiasing techniques is variable

depending on correlation between task and
demographic attributes.



